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Abstract
The electric field for an infinite array of conducting nanosized objects in
two-dimensional space has been calculated. The mirror symmetry for this
physical problem has been introduced. By taking into account this symmetry,
we transform the original problem into an infinite two-dimensional array of
nanosized objects with the same solution. The electric field equation of the
model has been successfully constructed using a single-layer potential of the
periodic Green function. The electric field operator has been introduced. This
mathematical approach yields a solution for determining the optimum structure
of nanosized electronic devices such as carbon nanotube-based field emitters.

PACS numbers: 02.30.Em, 41.20.Cv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The electric field on conducting nanosized materials plays a central role for electronic devices.
For instance, an array of carbon nanotubes [1] or of silicon carbide [2] are considered as good
electron emission sources for the field emission displays and microwave cold cathodes. The
goal of the field emission study on nanostructured materials is to obtain the highest current
density at a low applied electric field. The most dominant factor to achieve this aim, as also
revealed in experimental studies [3–9], is the magnitude of the local electric field at an emitter.

Since the individual emitter consisting of one carbon nanotube has been realized [1],
it is getting more important to investigate the local electric field on the tip of an individual
nanomaterial array. In order to obtain high local electric fields, an array of emitters with a
high aspect ratio (long length l divided by short tip radius of curvature r) is required. The
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current density can be calculated by using the Fowler–Nordheim equation [10, 11] when the
local electric field on the emission tip is determined [12–15].

The electric field calculation of a one-dimensional or a two-dimensional array of nanosized
objects should be approached by different ways in comparison with the conventional method
(finite difference or finite element method), because it is difficult to obtain the exact value of
electric field on such a structure due to its size effect like high aspect ratio (l/r > 100). For
instance, in the case of multi-walled carbon nanotubes, several studies [12–15] by using
a conventional method describe essentially its tendency without giving any exact value.
Furthermore, most calculation methods rely on a great computing power.

Recently, Kokkorakis et al calculated the local electric field of the open and closed carbon
nanotubes [16, 17], but they assumed the shape of cathode to be spherical. Buldum and Lu
calculated the effective potential of electrons of carbon nanotubes using a self-consistent field-
pseudopotential electronic structure calculation method [18]. However the cathode—anode
distance has been assumed as infinite in this calculation and it is difficult to calculate the field
of an array of electron emitters. Wang et al found analytic solutions of the local electric field
for the floating sphere model [19, 20]. It was based on an analytically improved model, but
it had intrinsic limits for describing the potential of a nanotube due to the assumption that
the tip of a nanotube is in floating position from the cathode. Oh et al investigated the field
emission properties of carbon nanotube paste layer [21], but it was not an array structure of
single-standing nanosized objects.

There are mathematical approaches for solving electric field of biological materials
[22, 23] and nanoscale materials [24]. Their studies give a prospective way for solving
our physical model. In the present study, the mirror symmetry of local electric field on the
boundary of single-standing and nanosized objects arranging in a row in two-dimensional
space has been constructed. And then the electric field operator has been introduced. Finally
the strength of local electric field on the exact boundary of the infinite array of nanosized
objects is calculated using a single-layer potential of the periodic Green function. Our result
can be applied to any shape of linear arrays. For applications, we focus on an array of
nanotube-shaped objects in two-dimensional space. Last, the emission current density issued
from an infinite array of nanosized objects has been investigated.

2. Boundary conditions

The original physical problem and transformation of a boundary condition applied to a unit
cell with mirror symmetry into a two-dimensional array of nanosized objects is shown in
figure 1. Nanosized objects constitute a rectangular body and a hemispherical solid on the
body. Their dimensions for physical applications will be mentioned in section 4. They
are assumed to be perfect conductors. In order to eliminate mathematically critical points,
mirror symmetry with a basis of potential 0 V line is employed to the system, i.e., the
electric potential u is extended such that it is a potential in R × (−m2/2,m2/2) by defining
u(x,−y) = −u(x, y), and then we take again mirror symmetry with a basis of potential ±�0.
This problem is mathematically easier to approach than the original one. Since we take the 0
level line y = 0 as the reflection axis, u is smooth across it and satisfies{

∇2u(x) = 0, for x ∈ Y\D̄,

u(x) = 0, for x ∈ D̄.
(1)

Now let us define a linear function � by �(x, y) = Eext × y with the external
electric field Eext (= �0/(m2/2)). Note that on the two boundary lines y = m2/2 and
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Figure 1. Original physical problem and transformation of a boundary condition applied to a unit
cell with mirror symmetry into a two-dimensional array of nanosized objects.

y = −m2/2, (u− �0) is constantly 0 and has the same gradient. With the x-periodicity due
to the arrangement of nanotubes, we can write

(u − �0) is periodic in x and y (2)

with the reference cell Y = (−m1/2,m1/2) × (−m2/2,m2/2).

3. Derivation of the local electric field

We start deriving a key formula for the local electric field E (= ∂u/∂n′) by using Green
formulae of u for x ∈ Y\D̄:

u(x) =
∮

∂Y

∂�

∂n′ (x − x′)u(x′) dx′ −
∮

∂Y

�(x − x′)
∂u

∂n′ (x
′) dx′

−
∮

∂D

∂�

∂n′ (x − x′)u(x′) dx′ +
∮

∂D

�(x − x′)
∂u

∂n′ (x
′) dx′

= A1 + A2 + A3 + A4, (3)

where n′ is the outward unit normal vector on the boundary point x′, ∂u/∂n′ is defined as
∇u · n′, and �(x)(:= 1/2π × ln |x|) is the fundamental solution of the Laplacian ∇2 in R

2. A
compact expression of u(x) only with ∂u(x′)/∂n′, and x′ ∈ ∂D can be obtained as follows.
Firstly, A3 = 0 since u is constantly 0 on ∂D, secondly, we replace � by a periodic Green
function G, which satisfies

∇2G(x − x′) = δ(x − x′) − 1

m1m2
in Y

G is periodic w.r.t. Y.

(4)

Note that a constant difference between ∇2G(x − x′) and δ(x − x′) in equation (4) has no
effect on equation (3) due to

∫
Y\D̄ u(x′) dx′ = 0. The periodicity of G, (u − �) and ∇�
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implies that the values of G(x − x′)∇u(x′) at two opposite points x′’s on ∂Y are the same,
while those of n′ have the opposite direction, hence we have A2 = 0.

Now replacing u(x′) by �(x′) and applying Green formulae to �, A1 is identified to be
�(x′):

A1 =
∮

∂Y

∂G

∂n′ (x − x′)�(x′) dx′

=
∮

∂Y

∂G

∂n′ (x − x′)�(x′) dx′ −
∮

∂Y

G(x − x′)
∂�

∂n′ (x
′) dx′

= �(x).

Here the periodicity of (u − �),G and ∇� are used again.
In conclusion, we have

u(x) = �(x) +
∮

∂D

G(x − x′)E(x′) dx′, for x ∈ Y\D̄, (5)

where E = ∂u/∂n′ is the local electric field. Moreover, since the right-hand side of
equation (5) is harmonic inside D and 0 on ∂D from equation (1), we have

0 = �(x) +
∮

∂D

G(x − x′)E(x′) dx′, for x ∈ D. (6)

Differentiating equation (6), the following formula is obtained [25]:

E =
(

1

2
I − K∗

D

)−1 (
∂�

∂n

)
, (7)

where K∗
D is defined by

K∗
DE(x) = p.v.

∫
∂D

∂

∂n
G(x − x′)E(x′) dx′. (8)

The electric field operator has been defined by the inverse of (I/2−K∗
D). The invertability

of the operator (I/2 − K∗
D) on L2

0(∂D) = {f ∈ L2(∂D) :
∫
∂D

f dx = 0} is verified and a
representation of the periodic Green function G is obtained [25].

G(x) = − 1

m1m2

∑
n∈Z2\{0}

exp
(
i2πn · (

x1
m1

, x2
m2

))
4π2

( n2
1

m2
1

+ n2
2

m2
2

) . (9)

Then we get

∇2G(x) = 1

m1m2

∑
n∈Z2\{0}

exp

(
i2πn ·

(
x1

m1
,

x2

m2

))

= 1

m1m2

∑
n∈Z2

exp

(
i2πn ·

(
x1

m1
,

x2

m2

))
− 1

m1m2
, (10)

and from the Poisson summation formulae,∑
n∈Z2

exp

(
i2πn ·

(
x1

m1
,

x2

m2

))
=

∑
n∈Z2

δ

((
x1

m1
,

x2

m2

)
+ n

)

= m1m2

∑
n∈Z2

δ(x + (m1n1,m2n2)). (11)

With equations (10) and (11), it turns out that G, defined as equation (9), satisfies equation (4).
Using summation identities, the convergence of equation (9) can be proved. Recall the mirror
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symmetry with a basis of potential 0 V (see figure 1) and equation (9) in order to represent
(see [25])

m1m2G(x) = −
∑

n∈Z2\{0}

exp
(
i2πn · (

x1
m1

, x2
m2

))
4π2

( n2
1

m2
1

+ n2
2

m2
2

)
= − 1

4π2

∑
n∈Z2\{0}

cos 2πn1
x1
m1

cos 2πn2
x2
m2

n2
1

m2
1

+ n2
2

m2
2

= − 1

2π2

+∞∑
n1=0

cos 2πn1
x1

m1

+∞∑
n2=1

cos 2πn2
x2
m2

n2
1

m2
1

+ n2
2

m2
2

− 1

2π2

+∞∑
n2=0

cos

(
2πn2

x2

m2

) +∞∑
n1=1

cos 2πn1
x1
m1

n2
1

m2
1

+ n2
2

m2
2

= G1 + G2. (12)

Let us invoke three summation identities (see for instance [26]):
+∞∑

n2=1

cos 2πn2
x2
m2

n2
1

m2
1

+ n2
2

m2
2

= m2
2

+∞∑
n2=1

cos 2πn2
x2
m2

m2
2

m2
1
n2

1 + n2
2

=




− m2
1

2n2
1

+
m1m2π

2n1

cosh π(2x2 − m2)
n1
m1

sinh π m2
m1

n1
if n1 �= 0,

m2
2π

2

6
− m2π

2x2 + π2x2
2 if n1 = 0.

+∞∑
n1=1

cos 2πn1
x1
m1

n1
exp

(
−2πn1

x2

m1

)
= π

x2

m1
− log 2 − 1

2
log

(
sinh2 π

x2

m1
+ sin2 π

x1

m1

)
.

We then compute

G1 = − m2
2

2π2

+∞∑
n2=1

cos 2πn2
x2
m2

n2
2

− 1

2π2

+∞∑
n1=1

cos

(
2πn1

x1

m1

) [
− m2

1

2n2
1

+
m1m2π

2n1

cosh π(2x2 − m2)
n1
m1

sinh π m2
m1

n1

]

= − m2
2

2π2

+∞∑
n2=1

cos 2πn2
x2
m2

n2
2

+
m2

1

4π2

+∞∑
n1=1

cos
(
2πn1

x1
m1

)
n2

1

− m1m2

4π

+∞∑
n1=1

cos
(
2πn1

x1
m1

)
n1

cosh π(2x2 − m2)
n1
m1

sinh π m2
m1

n1

= −m2
2

12
+

m2

2
x2 − 1

2
x2

2 +
m2

1

24
− m1

4
x1 +

1

4
x2

1

− m1m2

4π

+∞∑
n1=1

cos
(
2πn1

x1
m1

)
n1

e−2π
n1
m1

x2

− m1m2

4π

+∞∑
n1=1

cos
(
2πn1

x1
m1

)
n1

[
cosh π(2x2 − m2)

n1
m1

sinh π m2
m1

n1
− e−2π

n1
m1

x2

]
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to arrive at

G1 = −2m2
2 − m2

1

24
+

m1m2 log 2

4π
− 1

4
(m1x1 − m2x2) − 1

4

(
2x2

2 − x2
1

)
+

m1m2

8π
log

(
sinh2 π

x2

m1
+ sin2 π

x1

m1

)
+ r1(x), (13)

where the function r1(x) is given by

r1(x) = −m1m2

4π

+∞∑
n1=1

cos
(
2πn1

x1
m1

)
n1

[
cosh π(2x2 − m2)

n1
m1

sinh π m2
m1

n1
− e−2π

n1
m1

x2

]

= −m1m2

4π

+∞∑
n1=1

cos
(
2πn1

x1
m1

)
n1

e2πn1
x2
m1 + e−2πn1

x2
m1

e2π
m2
m1

n1 − 1
.

In the same way,

G2 = −2m2
1 − m2

2

24
+

m1m2 log 2

4π
+

1

4
(m1x1 − m2x2) − 1

4

(
2x2

1 − x2
2

)
+

m1m2

8π
log

(
sinh2 π

x1

m2
+ sin2 π

x2

m2

)
+ r2(x), (14)

where the function r2(x) is given by

r2(x) = −m1m2

4π

+∞∑
n2=1

cos
(
2πn2

x2
m2

)
n2

[
cosh π(2x1 − m1)

n2
m2

sinh π m2
m1

n2
− e−2π

n2
m2

x1

]

= −m1m2

4π

+∞∑
n2=1

cos
(
2πn2

x2
m2

)
n2

e2πn2
x1
m2 + e−2πn2

x1
m2

e2π
m1
m2

n2 − 1
.

In conclusion,

m1m2G(x) = C − x2
1 + x2

2

4
+ r1(x) + r2(x) +

m1m2

8π
log

(
sinh2 πx2

m1
+ sin2 πx1

m1

)

+
m1m2

8π
log

(
sinh2 πx1

m2
+ sin2 πx2

m2

)
, (15)

where C is a constant and

r1(x) = −m1m2

4π

+∞∑
n1=1

cos
(
2πn1

x1
m1

)
n1

e2πn1
x2
m1 + e−2πn1

x2
m1

e2π
m2
m1

n1 − 1
, (16)

r2(x) = −m1m2

4π

+∞∑
n2=1

cos
(
2πn2

x2
m2

)
n2

e2πn2
x1
m2 + e−2πn2

x1
m2

e2π
m1
m2

n2 − 1
. (17)

Now we can compute equation (7), and we get the local electric field strength on the
surface of a nanosized object such as a carbon nanotube. The example of the solution for
carbon nanotubes array is introduced in the following section. Henceforth we shall define the
field enhancement factor γ as the ratio of the local electric field to the external electric field

Eext = �0/(m2/2), (18)

γ ≡ E/Eext. (19)
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Figure 2. The spacing dependence of the field enhancement factor γ for different nanotube
diameters, d = 10 nm (square), 20 nm (circle) and 40 nm (triangle), as a function of spacing
between nanotubes.

4. Computation results

For applications, we focus on an infinite array of nanotube-shaped objects (domain D in
figure 1) in two-dimensional space. The screening effect comes from the repulsive interaction
between neighbouring conducting nanotubes spaced s (= m1 in figure 1) apart. The
dependence of γ for different aspect ratios as a function of spacing between nanotubes s
(as referred to the nanotube length l) is shown in figure 2. The nanotubes are 1 µm in length
and 10 nm, 20 nm and 40 nm in diameter d (l/r = 200, 100 and 50). In all cases the field
enhancement factors γ saturate when s is about 8 times as large as l, which corresponds to
a nanotube density of about 106 nanotubes cm−2. In other words, as the spacing between
nanotubes decreases, γ decreases due to the increasing screening effect.

The normalized field enhancement factors of figure 2 reach a consensus: as long
as d < s/10, the diameter of nanotubes does not affect the screening effect within our
computation tolerance. When the nanotubes become more dense, the diameter effect is
appearing. The function of the screening effect can be extracted from the calculations (lines
in figure 2).

γ (s/ l) = γ (s∞)[1 − p · exp(−q · s/ l)], (20)

where γ (s/ l) is a field enhancement factor and γ (s∞) is that of a free-standing case without
neighbouring nanotubes. The p and q are screening constants. In this case, p is 0.76, and q is
0.66. The introduction of p gives a better accuracy to describe the screening effect.

For the detailed investigation of the field enhancement factor, let us consider the variation
of γ versus the position along the tip of a nanotube (figure 3). θ is polar coordinate referred
to the centre of the semicircle shaped tip on the vertical line through the apex as origin (see
small box in figure 3). A nanotube is 10 µm in length and 10 nm in diameter. γ significantly
decreases with opening θ . According to the Fowler–Nordheim equation that governs the field
emission, the current density exponentially increases with increase of the electric field. It
means that the specific region near the apex contributes to the total current.
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Figure 3. The field enhancement factor along the semicircle shaped tip as a function of the position
in radian. θ is polar coordinate referred to the centre of the semicircle shaped tip on the vertical
line through the apex as origin (insert).
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Figure 4. Normalized current densities for different initial local electric fields. The initial local
electric field is chosen as 1.5 (dash-dotted line), 3.0 (dashed line) and 15.0 (solid line) kV µm−1.

The current density is calculated by the Fowler–Nordheim equation as follows [10, 11]:

J = AF 2

φt2(y)
exp

[−Bv(y)φ3/2

F

]
, (21)

where F is the local electric field at the tip in V/cm, φ is the work function of the nanotube
emitter in eV, t2(y) and v(y) are electric field-dependent elliptical functions and y is the image
charge lowering contribution to the work function. A and B are the Fowler–Nordheim constants
given by 1.54 × 10−3 and 6.87 × 107. Given these definitions, the electric field-dependent
elliptical functions can be written t2(y) = 1.1, v(y) = 0.95 − y2 and y = 3.79 × 10−4F 1/2/φ

[27]. The work function of a multi-wall carbon nanotube emitter is set to be 5 eV in this study
[28, 29]. The current density J is in mA cm−2.

When the spacing between nanotubes is small, the magnitude of the local electric field
decreases due to the screening effect from neighbouring nanotubes. When the spacing is
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large, the current density decreases steadily due to the decreasing number of emission sources
in a unit surface. Taking into account these opposite trends, an optimization of the total
current density can be obtained. For clearness of the relation between the current density and
spacing, we examine the normalized current densities for different initial local electric fields F0

(figure 4). F0 is the local electric field for a single nanotube in free space. In figure 4, F0 is
chosen as 1.5 , 3.0 and 15.0 kV µm−1. The spacing s is expressed as referred to the nanotube
length l. As we discussed, the local electric field decreases with the decrease of spacing (or
s/ l). Several researchers pointed that the optimum spacing is twice as large as the length of a
nanotube [12, 13, 28]. This is partially true. As can be observed in figure 4, higher and higher
local electric fields induce a shift of the current density maximum towards lower values of
spacing (or of s/ l). For instance, when F0 is chosen as 1.5 kV µm−1, the maximum current
density is found for s = 5l; when F0 is chosen as 15 kV µm−1, the maximum is found for
s = 2l. This trend can be explained, taking into account the experimental dependence of the
current density as a function of the local electric field (equation (21)).

5. Conclusion

The local electric field problem concerning an infinite array of nanosized objects has been
solved. By taking into account the mirror symmetry, the linear array problem has been
transformed into a two-dimensional array problem, which is mathematically easier to handle.
The periodic Green function has been expanded, and then the electric field operator has been
successfully deduced using the boundary layer technique.

Using the mathematical approach, the value of the local electric field associated with an
array of nanotube tips has been estimated as well as the value of the current density for a given
nanotube length as a function of the nanotube spacing. From this work, a trend giving local
values of nanotube spacing has been deduced from the model when the local electric field
acting on the nanotube tips increases. Thus an optimum of the emission current density has
been found for a linear assembly of conducting nanosized objects.
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